

Welcome to Django PyNotify’s documentation!

Contents:

	Django PyNotify
	Features

	Credits

	Installation
	Stable release

	From sources

	Enable the library

	Usage
	Overview

	Signals

	Receivers

	Handlers

	Templates

	Dispatchers

	Extra tips
	Simplified usage

	Translations

	Asynchronous operation

	Configuration

	Example project
	Asynchronous operation

	Reference
	pynotify.config

	pynotify.dispatchers

	pynotify.exceptions

	pynotify.handlers

	pynotify.helpers

	pynotify.models

	pynotify.notify

	pynotify.receivers

	pynotify.serializers

	pynotify.tasks

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.5.5 (2023-01-03)

	0.5.4 (2022-03-10)

	0.5.3 (2022-03-01)

	0.5.2 (2022-02-21)

	0.5.1 (2022-01-20)

	0.4.6 (2021-08-31)

	0.4.5 (2021-01-21)

	0.4.4 (2021-01-15)

	0.4.3 (2020-12-16)

	0.4.2 (2020-12-11)

	0.4.1 (2020-10-12)

	0.4.0 (2020-08-12)

	0.3.2 (2020-07-27)

	0.3.1 (2020-06-12)

	0.3.0 (2020-04-19)

	0.2.2 (2020-02-11)

	0.2.1 (2020-02-11)

	0.2.0 (2020-02-11)

	0.1.7 (2020-01-20)

	0.1.6 (2019-04-16)

	0.1.5 (2019-04-12)

	0.1.4 (2019-04-08)

	0.1.3 (2019-04-01)

	0.1.2 (2019-03-20)

	0.1.1 (2019-03-20)

Indices and tables

	Index

Django PyNotify

[image: _images/django-pynotify.svg]
 [https://pypi.python.org/pypi/django-pynotify][image: _images/django-pynotify1.svg]
 [https://travis-ci.org/druids/django-pynotify][image: Documentation Status]
 [https://django-pynotify.readthedocs.io/en/latest/?badge=latest][image: Code coverage]
 [https://coveralls.io/github/druids/django-pynotify?branch=master]General purpose notification library for Django.

	Free software: MIT license

	Documentation: https://django-pynotify.readthedocs.io.

	Supported Python versions: 3.7, 3.8, 3.9, 3.10, 3.11

	Supported Django versions: 3.1, 3.2

Features

	Easy integration into project

	Notification templating and translation

	Asynchronous operation

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install PyNotify, run this command in your terminal:

$ pip install django-pynotify

This is the preferred method of installation, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources can be downloaded from the Github repo [https://github.com/druids/django-pynotify].

You can either clone the public repository:

$ git clone git://github.com/druids/django-pynotify

Or download the tarball [https://github.com/druids/django-pynotify/tarball/master]:

$ curl -OL https://github.com/druids/django-pynotify/tarball/master

Once you have a copy of the source, you can install it with:

$ make install

Enable the library

Once installed, add the library to INSTALLED_APPS in your Django project settings:

INSTALLED_APPS = [
 ...
 'pynotify.apps.PyNotifyConfig'
]

Usage

Overview

The library uses following pipeline of components that handle creatation of notifications.

[image: _images/pipeline.svg]

Signals

Notification creation process starts by sending a Django signal. This mechanism allows hooking notifications to various
events within the system (even inside 3rd party libraries) and helps to decouple the code.

Following types of signals can be used:

	internal Django signals, like post_save

	singals from 3rd party libraries, like password_set from django-allauth

	your own signals

Imagine we would like to create a notification for an author, when someone reads his article. We start by defining
a custom signal:

from django.dispatch import Signal

article_viewed = Signal(providing_args=['user', 'article'])

When this signal is sent, it means that user has viewed article.

Receivers

Receivers receive signals kwargs and pass them to handlers. There are currently two receivers implemented in the
library:

	SynchronousReceiver

	AsynchronousReceiver

By default, the library is using the synchronous receiver, because it is easier for use. The synchronous receiver calls
directly the handler. Asynchronous receiver is more efficient, but requires additional setup, see Asynchronous operation.

You can set which receiver will be used in the pipeline by changing PYNOTIFY_RECEIVER setting (see Configuration).
If you need to implement your own receiver, you should inherit from BaseReceiver.

Most of the time, you don’t need to implement your own receivers.

Handlers

Handlers are probably the most important part of the pipeline. They handle creating of
Notification model instance(s) from signal kwargs received from a receiver.

Handler is typically the only thing you need to define in order to create a new type of notification, provided the
signal you want to react upon already exists.

Let’s create a simple handler for our “article viewed” notification:

from pynotify.handlers import BaseHandler
from articles.signals import article_viewed

class ArticleViewedHandler(BaseHandler):

 def get_recipients(self):
 return [self.signal_kwargs['article'].author]

 def get_template_data(self):
 return {
 'title': 'Your article has been viewed!',
 }

 class Meta:
 signal = article_viewed

As you can see, you need to implement at least following methods in the handler:

	get_recipients()

	get_template_data()

All handlers are typically kept in file handlers.py in a dedicated application within the project. When handler is
defined (or more specifically, imported), it is paired with the signal defined in handler’s Meta.

Let’s say you created notifications app with notifications/handlers.py. In order for handlers to be
automatically loaded, you must either set the PYNOTIFY_AUTOLOAD_MODULES in project settings:

PYNOTIFY_AUTOLOAD_MODULES = ('notifications.handlers',)

or load handlers module manually when Django is ready, i.e. put following code to notifications/apps.py:

from django.apps import AppConfig

class NotificationsConfig(AppConfig):

 name = 'notifications'
 verbose_name = 'Notifications'

 def ready(self):
 from . import handlers

Now, when you send the article_viewed signal, a new notification will be created for article author.

Note

It is possible to set signal = None in handler’s Meta. In that case, the handler won’t be paired with any
signal and it’s up to you to call it directly. There are two use cases for this feature:

	You want to use some custom signal mechanism, bypassing Django signals completely

	You want to process created notifications outside of the handler (they are returned by handler’s
handle method)

Templates

Templates are blueprints for notifications, they are referenced in the notification and are used to dynamically render
notification fields. Handler’s method get_template_data() returns values for
NotificationTemplate attributes.

When notification is being created, handler first checks if template with attributes returned by
get_template_data() exists. If not, the template is first created and then assigned
to the created notification.

The most powerful feature of templates is probably the ability to dynamically render related objects. This can be best
illustrated with an example. We will improve the “article viewed” notification from the previous section:

from pynotify.handlers import BaseHandler
from articles.signals import article_viewed

class ArticleViewedHandler(BaseHandler):

 def get_recipients(self):
 return [self.signal_kwargs['article'].author]

 def get_template_data(self):
 return {
 'title': '{{user}} viewed your article {{article}}',
 'trigger_action': '{{article.get_absolute_url}}'
 }

 def get_related_objects(self):
 return {
 'user': self.signal_kwargs['user'],
 'article': self.signal_kwargs['article']
 }

 class Meta:
 signal = article_viewed

As you can see, we have changed the template strings to true Django templates, because the template fields, when
accessed through Notification, are rendered using Django template engine with context filled
with named related objects. This is very convenient since notifications will always stay up to date, even if related
object changes.

Note

For security reasons, you can only access related object’s string representation and a set of attributes defined in
PYNOTIFY_RELATED_OBJECTS_ALLOWED_ATTRIBUTES. See Configuration for more information.

Caution

Avoid adding unnecessary attributes to PYNOTIFY_RELATED_OBJECTS_ALLOWED_ATTRIBUTES, since it increases
coupling between notification template(s) and the code. This is undesirable and makes managing and maintenance of
notifications harder.

Always consider first to store attribute’s value in extra data (as described lower), or save nested objects as
standalone related objects (if you really need dynamic behavior).

In case you want to “freeze” the values used in template strings (i.e. not reflect changes made in related objects),
define get_extra_data(), which should return a dict of JSON serizalizable values.
These extra data are also put into template context, together with named related objects.

If you need some extra fields, that are relevant to your use case, you can pass extra_fields, which is
expected to a be a flat dictionary of strings. These extra fields are also dynamically rendered, just like standard
notification fields.

Instead of using get_template_data(), you can define handler’s attribute
template_slug. This is a better option in case you prefer to often change template strings via administration
interface. Note, that the admin template (AdminNotificationTemplate) referenced by slug
must already exist - it won’t be automatically created. You can create it in administration interface or using data
migration.

Given the admin template with slug article-viewed, our handler can be modified as follows:

from pynotify.handlers import BaseHandler
from articles.signals import article_viewed

class ArticleViewedHandler(BaseHandler):

 template_slug = 'article-viewed'

 def get_recipients(self):
 return [self.signal_kwargs['article'].author]

 def get_related_objects(self):
 return {
 'user': self.signal_kwargs['user'],
 'article': self.signal_kwargs['article']
 }

 class Meta:
 signal = article_viewed

Dispatchers

Dispatchers are used by handlers to propagate notifications through various communication channels, e.g. SMS, e-mails,
push. The library currently does not include any specific dispatchers, just the base class
BaseDispatcher.

Let’s implement e-mail notifications for our “article viewed” notification. We’ll start by creating an e-mail
dispatcher:

from pynotify.dispatchers import BaseDispatcher
from django.core.mail import send_mail

class EmailDispatcher(BaseDispatcher):

 def dispatch(notification):
 send_mail(
 subject=notification.title,
 message=notification.text,
 from_email='noreply@example.com',
 recipient_list=(notification.recipient.email,),
)

And now we will add our dispatcher to the handler:

from pynotify.handlers import BaseHandler
from articles.signals import article_viewed

from .dispatcher import EmailDispatcher

class ArticleViewedHandler(BaseHandler):

 dispatchers = (EmailDispatcher,)

 ...
 ...

Extra tips

Simplified usage

If all you need is just to create notifications at some point in your code, you can start doing so right away after
installation of the library. No further configuration needed!

To create a notification, simply call the notify() function:

from django.contrib.auth.models import User
from pynotify.notify import notify

notify(recipients=User.object.all(), title='Hello World!')

Even with this simple approach, you can still use templating and/or translations.

Translations

Notification templates can be translated using the standard Django translation mechanism. The only thing needed is to
enable template translation by setting PYNOTIFY_TEMPLATE_TRANSLATE to True and include the translated messages
in *.po files.

You can use gettext_noop() when defining template strings, so the string will be automatically included in the
transaltion file(s):

def get_template_data(self):
 return {
 'title': gettext_noop('{{user}} viewed your article {{article}}'),
 }

However keep in mind, that if you change the template string inside gettext_noop(), you either have to change the
corresponding notification template saved in the database (e.g. using data migration) or keep the old string
in the translation file.

In case you are using template slugs, just put gettext_noop() anywhere in the code and keep it in sync with
contents of the notification template saved in the database:

class ArticleViewedHandler(BaseHandler):

 template_slug = 'article-viewed'

 # title translation
 gettext_noop('{{user}} viewed your article {{article}}')

Asynchronous operation

Creating notifications can be time demanding, especially when creating a lot of notifications at once or dispatching via
3rd party services (e.g. SMS, e-mails, push). Using the default synchronous operation in these cases considerably
extends time needed to process a request. Therefore, it is recommended to always switch to asynchronous mode, if you
can.

The library contains AsynchronousReceiver, which allows asynchronous operation. Intead of
calling a handler directly, it works by passing serialized signal kwargs to a Celery task upon database transaction
commit and the task then calls the handler. Since serialization comes into play here, signal kwargs are restricted
to be either directly JSON serializable values or model instances (which are serialized using built-in
ModelSerializer).

To go asynchronous, change setting PYNOTIFY_RECEIVER to pynotify.receivers.AsynchronousReceiver and start Celery
in your project in autodiscover mode. See http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html.

The Celery task is defined in the library, you don’t have to create one. But in case you want to use a custom Celery
task, set its import path to PYNOTIFY_CELERY_TASK setting. Your custom task should grab all the arguments it
receives and pass them to process_task(), like this:

from pynotify.helpers import process_task

@shared_task
def my_task(*args, **kwargs):
 process_task(*args, **kwargs)

Configuration

You can configure the library in Django settings. Following options are available:

	PYNOTIFY_AUTOLOAD_MODULES (default: None)

Iterable of Python modules that contain notification handlers. These modules will be imported at startup, i.e.
causing notification handlers to be automatically registered. For example, if you have Django app notifications
with handlers stored in handlers.py, the module for autoload will be notifications.handlers.

	PYNOTIFY_CELERY_TASK (default: pynotify.tasks.notification_task)

Import path to a Celery task used in asynchronous mode. See Asynchronous operation.

	PYNOTIFY_ENABLED (default: True)

Boolean indicating if library functionality, i.e. creating of notifications, is enabled. More specifically, if set to
False, receiver will not be called upon signal reception.

	PYNOTIFY_RECEIVER (default: pynotify.receivers.SynchronousReceiver)

Import path to a receiver class.

	PYNOTIFY_RELATED_OBJECTS_ALLOWED_ATTRIBUTES (default: {'get_absolute_url', })

A set of related object’s attributes that can be used in notification template(s).

	PYNOTIFY_STRIP_HTML (default: False)

If set to True, HTML tags and entities will be stripped off during notification rendering.

	PYNOTIFY_TEMPLATE_CHECK (default: False)

Boolean indicating if template string should be checked before rendering. If any named related object or extra data
used in the template string is missing, MissingContextVariableError will be raised.

	PYNOTIFY_TEMPLATE_PREFIX (default: '')

String that is prepended to any template just before rendering. Can be used to load custom tags/filters.

	PYNOTIFY_TEMPLATE_TRANSLATE (default: False)

Boolean indicating if template string should be translated via gettext() before rendering.

Example project

You can quickly try the library in the included example project. Install the library for development, as described in
Contributing and run following commands:

$ cd example
$./manage.py runserver

The example project will be available at https://localhost:8000/.

Asynchronous operation

If you want to try Asynchronous operation in the example project, make sure you have Redis installed and uncomment following
settings in example/config/settings.py:

CELERY_BROKER_URL = 'redis://127.0.0.1'
PYNOTIFY_RECEIVER = 'pynotify.receivers.AsynchronousReceiver'

Then open a new terminal window and start Celery with:

$ cd example
$ celery -A config worker

Reference

pynotify.config

	
class pynotify.config.Settings

	Bases: object

Holds default configuration values, the values can be overriden in settings with PYNOTIFY_ prefix.

pynotify.dispatchers

	
class pynotify.dispatchers.BaseDispatcher

	Bases: object

Base class for sending notification over a communication channel (e.g. e-mail, sms, push).

	
dispatch(notification)

	This method should implement actual sending of notification.

pynotify.exceptions

	
exception pynotify.exceptions.MissingContextVariableError(field_name, variable)

	Bases: Exception

Raised when template field cannot be rendered because variable used in it is not present in the context.

pynotify.handlers

	
class pynotify.handlers.BaseHandler

	Bases: object

Base class for handling creation of notification(s). Its purpose is to process signal kwargs sent over a defined
signal. There should be typically one handler (inherited from this class) for each signal. The handler must define
inner class Meta with following supported attributes:

	signal: Signal to which handler will be registered

	allowed_senders: Handler will be called only if signal was sent by allowed sender

	abstract: If set to True, the handler will not be registered

	
dispatcher_classes

	An iterable of dispatcher classes that will be used to dispatch each notification.

	
template_slug

	Slug of an existing admin template to be used. If not defined, you must define
get_template_data() method.

	
get_dispatcher_classes()

	Returns iterable of dispatcher classes used to dispatch notification(s).

	
get_extra_data()

	Returns a dictionary with extra data, the values must be JSON serializable.

	
get_recipients()

	Returns an iterable of recipients for which notification will be created.

	
get_related_objects()

	Returns a list or dictionary of related objects in format {“name”: object}. Named related objects (i.e. those
passed using a dictionary) can be referred in notification template.

	
get_template_data()

	Returns kwargs used to create a template. Not called if template slug is used.

	
get_template_slug()

	Returns slug of an admin template to be used.

	
handle(signal_kwargs)

	Handles creation of notifications from signal_kwargs.

	
class pynotify.handlers.HandlerMeta(name, bases, attrs)

	Bases: type

Registers handler for handling of signal defined in handler’s Meta.

pynotify.helpers

	
class pynotify.helpers.DeletedRelatedObject

	Bases: object

	Placeholder class that substitutes deleted related object and returns:
	
	“[DELETED]” as its string representation

	itself for any attribute accessed

	
class pynotify.helpers.SecureRelatedObject(related_object)

	Bases: object

Security proxy class allowing to access only string representation of the related object and a set of attributes
defined in RELATED_OBJECTS_ALLOWED_ATTRS settings.

	
class pynotify.helpers.SignalMap

	Bases: object

Maps signals to arbitrary values.

	
pynotify.helpers.autoload()

	Attempts to load (import) notification handlers from modules defined in PYNOTIFY_AUTOLOAD_MODULES

	
pynotify.helpers.get_from_context(variable, context)

	Tries to find variable value in given context.

	Parameters

	
	variable – Variable to look for. Template format is supported (e.g. “abc.def.ghi”).

	context – Template context.

	Returns

	Variable value or None if not found.

	
pynotify.helpers.get_import_path(_class)

	Returns import path for a given class.

	
pynotify.helpers.process_task(handler_class, serializer_class, signal_kwargs)

	Deserializes signal kwargs using the given serializer and calls given handler. This function is intended to be
called from a Celery task.

	
pynotify.helpers.receive(sender, **kwargs)

	Initiates processing of the signal by notification handlers through a receiver.

	
pynotify.helpers.register(signal, handler_class, allowed_senders=None)

	Starts listening to signal and registers handler_class to it.

	
pynotify.helpers.strip_html(value)

	Strips HTML (tags and entities) from string value.

pynotify.models

	
class pynotify.models.AdminNotificationTemplate(*args, **kwargs)

	Bases: BaseTemplate

Represents a “template of a template”. This model is intended to be managed from administration, hence its name. It
is identified by slug, which can be used for notification creation. However, this template is never used to
directly render a notification, but instead is used to create NotificationTemplate with same values.

	
slug

	Template slug, with which this template can be referred to.

	
is_active

	Flag that switches on/off creating notifications from this template.

	
is_locked

	Flag that switches on/off this template editing (for admin purposes, requires admin-side support).

	
send_push

	Flag that switches on/off sending push notifications from this template.
Currently, it has no effect on its own, but you can use it in your custom push notification solution.

	
exception DoesNotExist

	Bases: ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: MultipleObjectsReturned

	
class pynotify.models.BaseModel(*args, **kwargs)

	Bases: SmartModel

Base class for models that outpus its verbose name and PK.

	
class pynotify.models.BaseTemplate(*args, **kwargs)

	Bases: BaseModel

Base abstract model for notification template.

	
title

	Title of the notification.

	
text

	Text of the notification.

	
trigger_action

	Arbitrary action performed when user triggers (i.e. clicks/taps) the notification.

	
extra_fields

	Can be used to store additional fields needed in particular use case.

	
class pynotify.models.Notification(*args, **kwargs)

	Bases: BaseModel

Represents the notification.

Attributes specified in TEMPLATE_FIELDS are also available here, as generated properties,
that are evaluated at runtime and will return rendered field from the associated template. By default, the context
used for rendering is filled with named related objects and extra data, so they can be referenced in the template by
their name/key.

	
recipient

	Recipient of the notification.

	
template

	Template used to render generated notification fields.

	
is_read

	Boolean flag indicating that recipitent has seen the notification.

	
is_triggered

	Boolean flag indicating that recipient has triggered the notification (e.g. clicked/tapped)

	
extra_data

	JSON serialized dictionary with extra data.

	
exception DoesNotExist

	Bases: ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: MultipleObjectsReturned

	
clean()

	Hook for doing any extra model-wide validation after clean() has been
called on every field by self.clean_fields. Any ValidationError raised
by this method will not be associated with a particular field; it will
have a special-case association with the field defined by NON_FIELD_ERRORS.

	
property context

	Returns context dictionary used for rendering the template.

	
related_objects_dict

	Returns named related objects as a dictionary where key is name of the related object and value is the object
itself. Related objects without name are skipped.

	
class pynotify.models.NotificationMeta(name, bases, attrs)

	Bases: SmartModelBase, type

Creates property for each template field. The property returns rendered template.

	
class pynotify.models.NotificationQuerySet(model=None, query=None, using=None, hints=None)

	Bases: SmartQuerySet

	
create(recipient, template, related_objects=None, **kwargs)

	Create a new object with the given kwargs, saving it to the database
and returning the created object.

	
class pynotify.models.NotificationRelatedObject(*args, **kwargs)

	Bases: BaseModel

Represents object related to a notification. This object can be then referenced in notification template
fields by its name (if not None).

	
name

	String identificator of the object (for referencing in templates).

	
notification

	Related notification.

	
content_object

	The related object itself.

	
exception DoesNotExist

	Bases: ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: MultipleObjectsReturned

	
class pynotify.models.NotificationTemplate(*args, **kwargs)

	Bases: BaseTemplate

Represents template that is used for rendering notification fields. Each field specified in TEMPLATE_FIELDS is a
template string, that can be rendered using the render method.

	
admin_template

	Reference to admin template that was used to create this notification template.

	
exception DoesNotExist

	Bases: ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: MultipleObjectsReturned

	
render(field, context)

	Renders field using context.

pynotify.notify

	
class pynotify.notify.NotifyHandler

	Bases: BaseHandler

Notification handler for the notify method.

	
get_dispatcher_classes()

	Returns iterable of dispatcher classes used to dispatch notification(s).

	
get_extra_data()

	Returns a dictionary with extra data, the values must be JSON serializable.

	
get_recipients()

	Returns an iterable of recipients for which notification will be created.

	
get_related_objects()

	Returns a list or dictionary of related objects in format {“name”: object}. Named related objects (i.e. those
passed using a dictionary) can be referred in notification template.

	
get_template_data()

	Returns kwargs used to create a template. Not called if template slug is used.

	
get_template_slug()

	Returns slug of an admin template to be used.

	
pynotify.notify.notify(recipients, related_objects=None, extra_data=None, template_slug=None, dispatcher_classes=None, **template_fields)

	Helper method to simplify notification creation without the need to define signal and handler.

pynotify.receivers

	
class pynotify.receivers.AsynchronousReceiver(handler_class)

	Bases: BaseReceiver

Signal receiver that calls notification handler asynchronously via Celery.

	
receive(signal_kwargs)

	This method should implement passing signal_kwargs to the handler.

	
class pynotify.receivers.BaseReceiver(handler_class)

	Bases: object

Base class for receiving signals. Its purpose is to pass signal kwargs to the notification handler.

	
receive(signal_kwargs)

	This method should implement passing signal_kwargs to the handler.

	
class pynotify.receivers.SynchronousReceiver(handler_class)

	Bases: BaseReceiver

Signal receiver that calls notification handler synchronously.

	
receive(signal_kwargs)

	This method should implement passing signal_kwargs to the handler.

pynotify.serializers

	
class pynotify.serializers.BaseSerializer

	Bases: object

Base class for serializing/deserializing signal kwargs. Its puprose is to transform signal kwargs to be directly
JSON serializable (for compatible types, see https://docs.python.org/3/library/json.html#py-to-json-table).

	
deserialize(signal_kwargs)

	This method should return deserialized signal_kwargs.

	
serialize(signal_kwargs)

	This method should return serialized signal_kwargs.

	
class pynotify.serializers.ModelSerializer

	Bases: object

Serializes any model instance into its PK and ContentType PK and deserializes by fetching the model instance from
database. Works recursively on nested dicts and iterables. Values that are not model instances are left intact.

pynotify.tasks

	
pynotify.tasks.notification_task(self, *args, **kwargs)

	Celery task used in asynchronous mode. Just passes any arguments to process_task function.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/druids/django-pynotify/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Django PyNotify could always use more documentation, whether as part of the
official Django PyNotify docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/druids/django-pynotify/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up Django PyNotify for local development.

	Fork the repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-pynotify.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your
fork for local development:

$ mkvirtualenv django-pynotify
$ cd django-pynotify/
$ make develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

To create migrations, run:

$ make makemigrations

To make translations, run:

$ make po

To compile translations, run:

$ make mo

	When you’re done making changes, check that your changes pass flake8 and the tests:

$ make lint
$ make test

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a
docstring, and add the feature to the list in README.rst. Also consider inplementing the new functionality in the
example project.

	The pull request should work for all supported Python versions, and for PyPy. Check
https://travis-ci.org/druids/django-pynotify/pull_requests and make sure that the tests pass for all supported
Python versions.

Tips

To run a subset of tests:

$ cd example
$./manage.py test tests.test_config

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push && git push --tags
$ make release

Travis will then deploy to PyPI if tests pass.

Credits

List of people who helped with development of this library. Feel free to add your name to the list, if you’ve made a
contribution.

Development Lead

	Ondřej Kulatý <kulaty.o@gmail.com>

Contributors

	Luboš Mátl

	Petr Olah

History

0.5.5 (2023-01-03)

	Add support for Python 3.10 and 3.11

0.5.4 (2022-03-10)

	Migrate CI from Travis to Github Actions

	Fix lint errors

0.5.3 (2022-03-01)

	Prevent duplicates of NotificationTemplate objects

0.5.2 (2022-02-21)

	Allow handlers that are not paired with any signal

	Return notifications created with notify helper function

0.5.1 (2022-01-20)

	Use JSONField instead of TextField for JSON based fields

	Add extra_fields to BaseTemplate

	Drop Django 2.x support

0.4.6 (2021-08-31)

	Add is_locked field to AdminNotificationTemplate

0.4.5 (2021-01-21)

	Update dependencies

0.4.4 (2021-01-15)

	Add support for Python 3.9

	Add support for Django 3

	Fix BS4 warning

0.4.3 (2020-12-16)

	Fix translation file

0.4.2 (2020-12-11)

	Add send_push flag to AdminNotificationTemplate model

	Ignore duplicit dispatcher classes in BaseHandler

0.4.1 (2020-10-12)

	Add PYNOTIFY_STRIP_HTML config option

0.4.0 (2020-08-12)

	Removed support of Django 1.11, 2.0 and 2.1

	Fixed library requirements

0.3.2 (2020-07-27)

	Add is_active flag to AdminNotificationTemplate model

0.3.1 (2020-06-12)

	Improve template variable checking

	Add new filter filter_with_related_object

0.3.0 (2020-04-19)

	Fix documentation

	Change PYNOTIFY_AUTOLOAD_APPS to PYNOTIFY_AUTOLOAD_MODULES, i.e. allow notification handlers to reside in
arbitrary module

0.2.2 (2020-02-11)

	Use Django JSON encoder for encoding extra data

0.2.1 (2020-02-11)

	Fix failed PyPi upload

0.2.0 (2020-02-11)

	Add admin templates

	Limit usage of related objects in templates and add PYNOTIFY_RELATED_OBJECTS_ALLOWED_ATTRIBUTES setting

	Show placeholder text for deleted related objects

0.1.7 (2020-01-20)

	Add support for Python 3.8 and Django 2.2

	Fix generating of translations

	Allow unnamed related objects to be passed in a list

0.1.6 (2019-04-16)

	Add PYNOTIFY_TEMPLATE_PREFIX config option

	Add methods get_template_slug() and get_dispatcher_classes() to BaseHandler

	Add coveralls.io integration

0.1.5 (2019-04-12)

	Add extra data to Notification model

0.1.4 (2019-04-08)

	Add _can_handle() method to BaseHandler

	Add PYNOTIFY_ENABLED setting

0.1.3 (2019-04-01)

	Add kwargs to Notification manager’s create() method

	Add realted_objects_dict property to Notification model

0.1.2 (2019-03-20)

	Remove automatic deploy to PyPi from Travis

0.1.1 (2019-03-20)

	First release of the library

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pynotify	

 	
 	
 pynotify.config	

 	
 	
 pynotify.dispatchers	

 	
 	
 pynotify.exceptions	

 	
 	
 pynotify.handlers	

 	
 	
 pynotify.helpers	

 	
 	
 pynotify.models	

 	
 	
 pynotify.notify	

 	
 	
 pynotify.receivers	

 	
 	
 pynotify.serializers	

 	
 	
 pynotify.tasks	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T

A

 	
 	admin_template (pynotify.models.NotificationTemplate attribute)

 	AdminNotificationTemplate (class in pynotify.models)

 	AdminNotificationTemplate.DoesNotExist

 	
 	AdminNotificationTemplate.MultipleObjectsReturned

 	AsynchronousReceiver (class in pynotify.receivers)

 	autoload() (in module pynotify.helpers)

B

 	
 	BaseDispatcher (class in pynotify.dispatchers)

 	BaseHandler (class in pynotify.handlers)

 	BaseModel (class in pynotify.models)

 	
 	BaseReceiver (class in pynotify.receivers)

 	BaseSerializer (class in pynotify.serializers)

 	BaseTemplate (class in pynotify.models)

C

 	
 	clean() (pynotify.models.Notification method)

 	content_object (pynotify.models.NotificationRelatedObject attribute)

 	
 	context (pynotify.models.Notification property)

 	create() (pynotify.models.NotificationQuerySet method)

D

 	
 	DeletedRelatedObject (class in pynotify.helpers)

 	deserialize() (pynotify.serializers.BaseSerializer method)

 	
 	dispatch() (pynotify.dispatchers.BaseDispatcher method)

 	dispatcher_classes (pynotify.handlers.BaseHandler attribute)

E

 	
 	extra_data (pynotify.models.Notification attribute)

 	
 	extra_fields (pynotify.models.BaseTemplate attribute)

G

 	
 	get_dispatcher_classes() (pynotify.handlers.BaseHandler method)

 	(pynotify.notify.NotifyHandler method)

 	get_extra_data() (pynotify.handlers.BaseHandler method)

 	(pynotify.notify.NotifyHandler method)

 	get_from_context() (in module pynotify.helpers)

 	get_import_path() (in module pynotify.helpers)

 	get_recipients() (pynotify.handlers.BaseHandler method)

 	(pynotify.notify.NotifyHandler method)

 	
 	get_related_objects() (pynotify.handlers.BaseHandler method)

 	(pynotify.notify.NotifyHandler method)

 	get_template_data() (pynotify.handlers.BaseHandler method)

 	(pynotify.notify.NotifyHandler method)

 	get_template_slug() (pynotify.handlers.BaseHandler method)

 	(pynotify.notify.NotifyHandler method)

H

 	
 	handle() (pynotify.handlers.BaseHandler method)

 	
 	HandlerMeta (class in pynotify.handlers)

I

 	
 	is_active (pynotify.models.AdminNotificationTemplate attribute)

 	is_locked (pynotify.models.AdminNotificationTemplate attribute)

 	
 	is_read (pynotify.models.Notification attribute)

 	is_triggered (pynotify.models.Notification attribute)

M

 	
 	MissingContextVariableError

 	ModelSerializer (class in pynotify.serializers)

 	
 module

 	pynotify.config

 	pynotify.dispatchers

 	pynotify.exceptions

 	pynotify.handlers

 	pynotify.helpers

 	pynotify.models

 	pynotify.notify

 	pynotify.receivers

 	pynotify.serializers

 	pynotify.tasks

N

 	
 	name (pynotify.models.NotificationRelatedObject attribute)

 	Notification (class in pynotify.models)

 	notification (pynotify.models.NotificationRelatedObject attribute)

 	Notification.DoesNotExist

 	Notification.MultipleObjectsReturned

 	notification_task() (in module pynotify.tasks)

 	NotificationMeta (class in pynotify.models)

 	NotificationQuerySet (class in pynotify.models)

 	
 	NotificationRelatedObject (class in pynotify.models)

 	NotificationRelatedObject.DoesNotExist

 	NotificationRelatedObject.MultipleObjectsReturned

 	NotificationTemplate (class in pynotify.models)

 	NotificationTemplate.DoesNotExist

 	NotificationTemplate.MultipleObjectsReturned

 	notify() (in module pynotify.notify)

 	NotifyHandler (class in pynotify.notify)

P

 	
 	process_task() (in module pynotify.helpers)

 	
 pynotify.config

 	module

 	
 pynotify.dispatchers

 	module

 	
 pynotify.exceptions

 	module

 	
 pynotify.handlers

 	module

 	
 pynotify.helpers

 	module

 	
 	
 pynotify.models

 	module

 	
 pynotify.notify

 	module

 	
 pynotify.receivers

 	module

 	
 pynotify.serializers

 	module

 	
 pynotify.tasks

 	module

R

 	
 	receive() (in module pynotify.helpers)

 	(pynotify.receivers.AsynchronousReceiver method)

 	(pynotify.receivers.BaseReceiver method)

 	(pynotify.receivers.SynchronousReceiver method)

 	
 	recipient (pynotify.models.Notification attribute)

 	register() (in module pynotify.helpers)

 	related_objects_dict (pynotify.models.Notification attribute)

 	render() (pynotify.models.NotificationTemplate method)

S

 	
 	SecureRelatedObject (class in pynotify.helpers)

 	send_push (pynotify.models.AdminNotificationTemplate attribute)

 	serialize() (pynotify.serializers.BaseSerializer method)

 	Settings (class in pynotify.config)

 	
 	SignalMap (class in pynotify.helpers)

 	slug (pynotify.models.AdminNotificationTemplate attribute)

 	strip_html() (in module pynotify.helpers)

 	SynchronousReceiver (class in pynotify.receivers)

T

 	
 	template (pynotify.models.Notification attribute)

 	template_slug (pynotify.handlers.BaseHandler attribute)

 	
 	text (pynotify.models.BaseTemplate attribute)

 	title (pynotify.models.BaseTemplate attribute)

 	trigger_action (pynotify.models.BaseTemplate attribute)

 _static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Django PyNotify’s documentation!

 		
 Django PyNotify

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Enable the library

 		
 Usage

 		
 Overview

 		
 Signals

 		
 Receivers

 		
 Handlers

 		
 Templates

 		
 Dispatchers

 		
 Extra tips

 		
 Simplified usage

 		
 Translations

 		
 Asynchronous operation

 		
 Configuration

 		
 Example project

 		
 Asynchronous operation

 		
 Reference

 		
 pynotify.config

 		
 Settings

 		
 pynotify.dispatchers

 		
 BaseDispatcher

 		
 pynotify.exceptions

 		
 MissingContextVariableError

 		
 pynotify.handlers

 		
 BaseHandler

 		
 HandlerMeta

 		
 pynotify.helpers

 		
 DeletedRelatedObject

 		
 SecureRelatedObject

 		
 SignalMap

 		
 autoload()

 		
 get_from_context()

 		
 get_import_path()

 		
 process_task()

 		
 receive()

 		
 register()

 		
 strip_html()

 		
 pynotify.models

 		
 AdminNotificationTemplate

 		
 BaseModel

 		
 BaseTemplate

 		
 Notification

 		
 NotificationMeta

 		
 NotificationQuerySet

 		
 NotificationRelatedObject

 		
 NotificationTemplate

 		
 pynotify.notify

 		
 NotifyHandler

 		
 notify()

 		
 pynotify.receivers

 		
 AsynchronousReceiver

 		
 BaseReceiver

 		
 SynchronousReceiver

 		
 pynotify.serializers

 		
 BaseSerializer

 		
 ModelSerializer

 		
 pynotify.tasks

 		
 notification_task()

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.5.5 (2023-01-03)

 		
 0.5.4 (2022-03-10)

 		
 0.5.3 (2022-03-01)

 		
 0.5.2 (2022-02-21)

 		
 0.5.1 (2022-01-20)

 		
 0.4.6 (2021-08-31)

 		
 0.4.5 (2021-01-21)

 		
 0.4.4 (2021-01-15)

 		
 0.4.3 (2020-12-16)

 		
 0.4.2 (2020-12-11)

 		
 0.4.1 (2020-10-12)

 		
 0.4.0 (2020-08-12)

 		
 0.3.2 (2020-07-27)

 		
 0.3.1 (2020-06-12)

 		
 0.3.0 (2020-04-19)

 		
 0.2.2 (2020-02-11)

 		
 0.2.1 (2020-02-11)

 		
 0.2.0 (2020-02-11)

 		
 0.1.7 (2020-01-20)

 		
 0.1.6 (2019-04-16)

 		
 0.1.5 (2019-04-12)

 		
 0.1.4 (2019-04-08)

 		
 0.1.3 (2019-04-01)

 		
 0.1.2 (2019-03-20)

 		
 0.1.1 (2019-03-20)

_static/minus.png

_static/plus.png

